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Introduction
Since the US Supreme Court’s 2001 SWANCC case (531 US 159), there has
been significant focus on whether Clean Water Act (CWA) protections
should be extended to so-called geographically isolated wetlands (GIWs);
wetlands that are surrounded by uplands and lack readily apparent surface
water connections to downgradient waters (Downing et al., 2003; Leibowitz
and Nadeau, 2003; Tiner, 2003a, b; see Mushet et al. (2015) for a history
and critique of this term). Following the US Supreme Court’s 2006 Rapanos
case (547 US 715), interest in GIWs increased, with a more recent emphasis
on the roles surface and subsurface hydrological flows might play in
connecting GIWs to downgradient waters at the landscape scale (Downing
et al., 2007; Nadeau and Rains, 2007; Leibowitz et al., 2008). One key
outcome from Rapanos comes from the opinion penned by Justice Anthony
Kennedy, which states that non-adjacent wetlands, including non-adjacent
GIWs, can be waters of the USA (WOUS) subject to regulation under the
CWA if they, either individually or cumulatively, have a ‘significant nexus’
with the chemical, physical, and/or biological integrity of other, more
traditionally defined WOUS (e.g. navigable waters). In other words, a GIW
is a WOUS if it is connected to a downgradient WOUS, and this connection
substantively contributes to the chemical, physical, and/or biological
integrity of that downgradient WOUS.

The US Environmental Protection Agency recently completed a review
of peer-reviewed literature, seeking to synthesize existing scientific
understanding of how wetlands and streams, individually or in aggregate,
affect the chemical, physical, and biological integrities of downstream
waters (US Environmental Protection Agency, 2015). The report concludes
that all wetlands located on floodplains and/or within riparian areas have
significant chemical, physical, and/or biological connections with
downgradient WOUS. The report is more equivocal about those other
wetlands, including the vast majority of GIWs, which are not located on
floodplains and/or riparian areas. Instead, the report concludes that these
wetlands occur along a continuum of connectivity, with a great deal of
spatial heterogeneity and temporal variability, and that a lack of
knowledge makes any generalization difficult. The report cites more than
1200 peer-reviewed papers, suggesting that the problem is not a lack of
general knowledge about wetlands and waters but, rather, a lack of specific
knowledge on the roles that GIWs might play in controlling the chemical,
physical, and/or biological integrities of downgradient WOUS. Therefore,
the report concludes that additional research focused on the frequency,
magnitude, timing, duration, and rate of fluxes from GIWs to
downgradient waters is needed to improve the US Environmental
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Protection Agency’s abilities to ‘identify waters of
national importance and maintain the long-term
sustainability and resiliency of valued water resources’.
Towards these ends, a broad range of research is
needed, from field and numerical modelling studies that
evaluate connectivity and better elucidate functional
relationships between GIWs and downgradient waters
to the development of new conceptual frameworks that
can be used to generate hypotheses regarding how these
systems vary over space and time. The latter is the focus
of this commentary, with a specific focus on the effects
of GIWs on flows in downgradient waters.
GIWs as Nodes in Hydrologic Networks
Hydrological flowpaths connect landscapes in four
dimensions – longitudinal, lateral, vertical, and through
time. This four-dimensional hydrological connectivity,
operating at local to landscape scales, is a basic tenet of
freshwater ecology (Ward, 1989). Hydrological
flowpaths are extensive and dynamic, connecting
landscapes within watersheds (McDonnell, 2013) and
across watershed divides (see Sun et al., 1997 and
references therein). Fluxes of water along these
hydrological flowpaths occur at varying frequencies,
magnitudes, timings, durations, and rates, which are
primarily determined by climate, geology, and topog-
raphy (Winter, 2001; Wolock et al., 2004; Devito et al.,
2005; Wigington et al., 2013; Park et al., 2014) and
collectively control the physical integrity of
downgradient waters (Nadeau and Rains, 2007). GIWs
distributed throughout the landscape intercept and
interact with water that flows along these flowpaths,
and these GIWs are therefore integrally connected to
uplands, other wetlands, and downgradient waters.

Conceptually, this hydrological landscape is a net-
work, with GIWs as nodes – receiving, storing, and
sending water – and flowpaths as edges – transmitting
water (Figure 1). In the GIWs, flows are modulated by
the performance of lag, sink, and source functions
(Table I; Leibowitz et al., 2008; US Environmental
Protection Agency, 2015). Lag functions delay the flow
of water to downgradient waters and include local
surface water and groundwater storage (Haag et al.,
2005; Gleason et al., 2007; Lane and D’Amico, 2010)
and exchange (Min et al., 2010; Nilsson et al., 2013;
McLaughlin et al., 2014), with the latter regulating
water tables and enhancing or reducing surface water
and groundwater storage depending on the direction of
the exchange. Sink functions reduce the flow of water to
downgradient waters and include evapotranspiration
(Sun et al., 2002; Towler et al., 2004; Hammersmark
et al., 2010) and deep groundwater recharge (Sinclair,
1977; Wood and Sanford, 1995; Rains, 2011). Lag and
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sink functions can act in concert to more greatly affect
wetland response to variable precipitation (Rosenberry
and Winter, 1997). Collectively, these lag and sink
functions modulate the source function that can
contribute flow to downgradient waters by surface
water and shallow groundwater outflow (Leibowitz and
Vining, 2003; Rains et al., 2006; Sass and Creed, 2008;
Wilcox et al., 2011; Golden et al., 2015). Along the
flowpaths, flows are further altered by interactions
among flowpath length, gradient, resistance or conduc-
tance (e.g. hydraulic conductivity and surface roughness),
and leakage (e.g. evapotranspiration and deep recharge).
As water flows through this network, the frequency,
magnitude, timing, duration, and rate of flows are all
modulated bymyriad interactions occurring inGIWs and
along flowpaths.
Network-Scale Effects of GIWs on Flow
Generation
While an individual GIW can affect local-scale hydrol-
ogy, its effect on landscape-scale hydrology is likely
negligible. However, the cumulative effect of many
GIWs can play an important role in landscape-scale
hydrology by regulating the frequency, magnitude,
timing, duration, and rate of flows to downgradient
waters (Ogawa and Male, 1986; Hey and Philippi, 1995;
Cohen and Brown, 2007; Golden et al., 2015). This
cumulative effect emerges from lag, sink, and source
functions resulting in time-varying flows being directed
towards downgradient waters along overland
(Leibowitz and Vining, 2003; Wilcox et al., 2011),
shallow subsurface (Rains et al., 2006; van der Kamp
and Hayashi, 2009), and deep groundwater (Winter,
1999; Rains, 2011) flowpaths.
The GIWs and the flowpaths that connect them to

downgradient waters exist along a hydrologically
dynamic continuum (Euliss et al., 2004; Cohen et al.,
In Review). Geology and topography are spatially
heterogeneous but temporally fixed. However, climate
is variable, and its effects vary annually, seasonally, and
episodically. Therefore, the degree to which lag, sink,
and source functions are performed and the flowpaths
along which water is directed to downgradient waters
are strongly dependent on both current and antecedent
conditions (Rains et al., 2006; Pyzoha et al., 2008).
When lag and sink functions dominate and/or water is
directed from GIWs to downgradient waters along
shallow subsurface or deep groundwater flowpaths,
then downgradient flows might be delayed or dimin-
ished. In contrast, when source functions dominate
and/or water is directed from GIWs to downgradient
waters along overland flowpaths, then downgradient
flows might be hastened or enhanced. Therefore,
Hydrol. Process. 30, 153–160 (2016)



Figure 1. (a) A watershed with GIWs and other waterbodies conceptualized as (b) a network with GIWs and other waterbodies as nodes –
receiving, storing, and sending water – and flowpaths as edges – transmitting water. GIW, geographically isolated wetland

Table I. Hydrologic functions of geographically isolated wetlands

Function Type Description

Storage Lag Storage of surface water and/or shallow groundwater.
Partially controls other hydrologic functions.
Especially pronounced in depressional GIWs.

Exchange Lag Exchange of surface water and groundwater,
thereby regulating water table variation because of
bidirectional exchanges (recharge and discharge) at local scales.

Evapotranspiration Sink Enhanced evapotranspiration because of prolonged
presence of surface water and/or shallow groundwater.
Potentially an important watershed-scale loss of water.

Deep recharge Sink Enhanced deep groundwater recharge because of local topographic
lows that hold surface water and/or shallow groundwater.
Potentially an important watershed-scale loss of water.
Especially pronounced in depressional GIWs.

Flow generation Source Alteration of the frequency, magnitude, timing, duration,
and rate of outflows to downgradient wetlands and waters
because of the combined effects of the lag and sink functions.

GIW, geographically isolated wetland
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antecedent conditions exert a substantial control on
travel times, with water entering a GIW being directed
along slow subsurface flowpaths, rapid surface
flowpaths, to or from adjacent shallow groundwater,
or to the atmosphere or deep groundwater storage
depending upon those antecedent conditions.
The cumulative effect results from water flowing from

many GIWs to downgradient waters along a continuum
of travel lengths and times, varying by GIW and over
155Copyright © 2015 John Wiley & Sons, Ltd.
time. At a given moment in time, there might be no flow
from some GIWs, relatively slow subsurface flow from
other GIWs, and relatively rapid surface flow from still
other GIWs. The cumulative effect of the many GIWs on
downgradient streamflows emerges from the convolu-
tion of these travel times (Cohen et al., In Review;
Figure 2). In this convolution, time-varying flows – or the
lack thereof – from eachGIW cumulatively contribute to
the maintenance of the natural flow regime (Poff et al.,
Hydrol. Process. 30, 153–160 (2016)



Figure 2. At a given moment in time, the effects of GIWs on downgradient hydrographs emerge from the convolution of the continuum of travel
times between the portfolio of GIWs in the network and the downgradient water. The result is a component of the hydrograph composed of the
time-varying contributions from each GIW in the network, which could collectively play important roles in maintaining the natural flow regime.

Modified from Cohen et al. (In Review). GIW, geographically isolated wetland
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1997). Because these flows are time varying, the effect on
downgradient hydrographs is not fully realized until all
GIWs have gone through complete annual and inter-
annual cycles of connectivity (Phillips et al., 2011), so
altering any component of the convolved hydrological
response could change the natural flow regime, with
potential impacts to downgradient waters.
Human Alterations to GIWs
Human alterations to GIWs can affect lag, sink, and
source functions, thereby altering the convolved,
watershed-scale hydrologic response. For example,
156Copyright © 2015 John Wiley & Sons, Ltd.
sediments can be deposited in GIWs – either by direct
placement or indirect sediment-laden discharge from
the contributing basin – reducing storage capacity,
sometimes by as much as 100% (Luo et al., 1997, 1999;
Fenstermacher et al., 2014). Direct drainage of GIWs
can result in the disproportionate loss of small GIWs
and those distant from the stream network at the
landscape scale (Lang et al., 2012), which can increase
the runoff efficiency between the remaining wetlands
and downgradient waters (Van Meter and Basu, 2015).
Direct drainage also can alter the hydraulic gradients
that arise between GIWs and adjacent uplands, thereby
altering the surface water and groundwater exchange
Hydrol. Process. 30, 153–160 (2016)
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between GIWs and adjacent uplands (McLaughlin and
Cohen, 2013). Regional groundwater pumping can
lower hydraulic heads, resulting in enhanced ground-
water recharge from overlying GIWs (Haag et al., 2005;
Lee et al., 2009; Haag and Pfeiffer, 2012).
Human alterations to flowpaths also can affect the

convolved hydrologic response. Ditching and tiling (e.g. for
agricultural purposes) increase drainage efficiency, with
the result commonly being that water is quickly routed
into and/or out of GIWs (Randall et al., 1997; Min et al.,
2010; Boland-Brien et al., 2014). This often more directly
links otherwise remote GIWs to stream systems (Gamble
et al., 2007) and has a significant effect on downgradient
streamflows (Cohen and Brown, 2007; Babbar-Sebens
et al., 2013). Even in the absence of direct ditching or
tiling, changes in land use and/or land cover can alter
flowpath dynamics, as the mechanical destruction of soil
structure and the homogenization ofmicrotopography in
agricultural settings can increase runoff efficiency into
and out of GIWs (Euliss and Mushet, 1996; van der
Kamp et al., 2003; Pyke and Marty, 2005; Tsai et al.,
2007; McDonough et al., 2014), and preferential surface
water flowpaths can be established through animal-
mediated soil compaction along trails often terminating
at GIWs (e.g. Tanner et al., 1984; van der Kamp et al.,
2003; Franzluebbers et al., 2012). In addition, increases
in impervious surfaces in urban settings may also
increase runoff efficiency, thereby contributing to
downstream hydrograph ‘flashiness’ (Walsh et al.,
2012; Faulkner, 2004). Conversely, the restoration of
GIWs may moderate flows (McDonough et al., 2014).
Implications for Future Research and Policy
The extensive and dynamic hydrological flowpaths
connect landscapes in four dimensions is well known
as regards to stream networks (Ward, 1989; Nadeau
and Rains, 2007; McDonnell, 2013). More poorly
known and understood is the role that GIW nodes
and related flowpath edges play in the functioning of
the broader hydrological network, including the stream
network. This represents a critical knowledge gap,
especially in archetypal GIW-dominated landscapes
(e.g. vernal pools, prairie potholes, and Carolina bays)
where the number of these GIW nodes and related
flowpath edges is large (Semlitsch and Bodie, 1998).
Does recognition of GIWs as nodes within the

hydrological network mean that there is a significant
nexus between the nodes and the chemical, physical,
and/or biological integrities of downgradient waters?
Whether this constitutes a significant nexus is a policy
decision that we do not purport to advance here;
nevertheless, GIWs certainly perform lag, sink, and
source functions that can influence the chemical,
157Copyright © 2015 John Wiley & Sons, Ltd.
physical, and/or biological integrities of downgradient
waters, especially when considered in aggregate (Ogawa
and Male, 1986; Hey and Philippi, 1995; Bullock and
Acreman, 2003; Cohen and Brown, 2007; US Environ-
mental Protection Agency, 2015). But few studies have
sought to discern the specific effects of GIWs on
downgradient waters (McLaughlin et al., 2014; Golden
et al., 2015). Therefore, there remains a lack of general
agreement on the roles that GIWs play in landscape-
scale hydrology (US Environmental Protection Agency,
2015). Understanding the emergent properties of GIWs
at the landscape-scale requires that we consider more
than just the typical behaviour of a GIW or given class of
GIW. Rather, it requires that we focus instead on the
aggregate effects of a portfolio of functions and
behaviours expressed by a network of GIWs and GIW
complexes (Figure 2; Cohen et al., In Review).

An initial step towards improving our understanding of
the aggregate effects of GIWs is the development of a
classification system that can be used to define regions or
conditions under which GIWs have expected behaviours
that can be studied in aggregate, much like the concept of
hydrological landscapes (Winter, 2001; Wolock et al.,
2004; Wigington et al., 2013), although defined at scales
and including factors more appropriate for the study of
GIWs (Rains et al., 2008). The next step is to place an
increasing emphasis on regional-scale data collection,
including both field data and remote-sensing data. As
regards to the latter, improvements in the sensitivity and
temporal resolution of commonly available datasetsmight
be necessary to map GIWs and related flowpaths, given
that remote-sensing datasets traditionally used to map
aquatic resources (e.g. aerial photographs) may have
significant limitations when applied to GIWs (Lang et al.,
2012; Yang and Chu, 2012; Lang et al., 2013). The final
step is improving the sensitivity and accessibility of
modelling and analytical tools that can be used to evaluate
the aggregate effects of the portfolio of GIWs that emerge
at the watershed scale. This might require the develop-
ment of new model approaches with an explicit
focus on the roles that GIWs play at the network scale
(e.g. McLaughlin et al., 2014). Alternatively, this might
instead only require the adaptation of existing models to
better describe the fine-scale surface–subsurface interac-
tions that characterize connectivity between GIWs and
the broader hydrological landscape (Golden et al., 2014).

A concerted effort such as this could transform our
understanding of watershed-scale hydrology, facilitating
a better understanding of the roles played by GIWs and
how these roles change depending upon spatial hetero-
geneity and temporal variability. A concerted effort such
as this also would be timely given the ongoing debate
about the geographic extent of the CWA, particularly as
it relates to non-navigable, intrastate waters, including
Hydrol. Process. 30, 153–160 (2016)
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GIWs. Under the current rule, non-adjacent wetlands,
including non-adjacent GIWs, require case-by-case
determinations of significant nexus if they are members
of five subcategories (e.g. western vernal pools, prairie
potholes, Delmarva Bays, Carolina Bays, or pocosins) or
are within 1219m of the ordinary high water mark or
high tide line (US Army Corps of Engineers/US
Environmental Protection Agency, 2015). A concerted
effort such as this would improve upon the scientific
understanding underlying the policy (e.g. US Environ-
mental Protection Agency, 2015) and facilitate the
development of improved policy and/or regulatory
guidance (e.g. 80 FR 37054), better enabling decision-
making regarding the geographic extent of WOUS
subject to regulation under the CWA.
Acknowledgements
The idea for this paper originated during a ‘Geograph-
ically Isolated Wetlands Research Workshop’ convened
and co-hosted by the US Environmental Protection
Agency Office of Research and Development and the
Joseph W. Jones Ecological Research Center and held
in Newton, GA, 18–21 November 2013 (http://www.
jonesctr.org/education_and_outreach/publications/
GIW_Workshop_Summary_2013_v6.3.pdf). We grate-
fully acknowledge all of the hosts and participants of
that workshop. The information in this document has
been funded in part by the US Environmental
Protection Agency. This article has been subjected to
US Environmental Protection Agency review and has
been approved for publication. The views expressed in
this article are those of the authors and do not
necessarily reflect the views or policies of the US
Environmental Protection Agency. Mention of trade
names or commercial products does not constitute
endorsement or recommendation for use.
References
Babbar-Sebens M, Barr RC, Tedesco LP, Anderson M. 2013. Spatial
identification and optimization of upland wetlands in agricultural
watersheds. Ecological Engineering 52: 130–142.

Boland-Brien SJ, Basu NB, Schilling KR. 2014. Homogenization of
spatial patterns of hydrologic response in artificially drained
agricultural catchments. Hydrological Processes 28: 5010–5020.

Bullock A, Acreman M. 2003. The role of wetlands in the hydrological
cycle. Hydrology and Earth System Sciences 7: 358–389.

Cohen MJ, Brown MT. 2007. A model examining hierarchical
wetland networks for watershed stormwater management. Ecological
Modelling 201: 179–193.

Cohen MJ, Creed IF, Alexander L, Basu N, Calhoun A, Craft C,
D’Amico E, DeKeyser E, Fowler L, Golden HE, Jawitz JW, Kalla P,
Kirkman LK, Lane CR, Lang M, Leibowitz SG, Lewis DB, Marton J,
McLaughlin DL, Mushet D, Raanan-Kiperwas H, Rains MC, Smith
158Copyright © 2015 John Wiley & Sons, Ltd.
L, Walls S. In Review. Do geographically isolated wetlands impact
landscape functions? Proceedings of the National Academy of Sciences.

Devito KJ, Creed IF, Gan T,Mendoza C, Petrone R, Silins U, Smerdon
B. 2005. A framework for broad-scale classification of hydrologic
response units on the Boreal Plain: is topography the first or last thing
to consider? Hydrological Processes 19: 1705–1714.

Downing DM, Winer C, Wood LD. 2003. Navigating through Clean
Water Act jurisdiction: a legal review. Wetlands 23: 475–493.

Downing D, Nadeau T-L, Kwok R. 2007. Technical and scientific
challenges in implementing Rapanos’ ‘Water of the United States’.
Natural Resources and Environment 22(42–45): 62–63.

Euliss NH Jr, Mushet DM. 1996. Water-level fluctuation in wetlands
as a function of landscape condition in the prairie pothole region.
Wetlands 16: 587–593.

Euliss N, LaBaugh J, Fredrickson L, Mushet D, Laubhan M, Swanson
G, Winter T, Rosenberry D, Nelson R. 2004. The wetland continuum:
a conceptual framework for interpreting biological studies. Wetlands
24: 448–458.

Faulkner S. 2004. Urbanization impacts on the structure and function
of forested wetlands. Urban Ecosystems 7: 89–106.

Fenstermacher D, Rabenhorst M, Lang M, McCarty G, Needelman B.
2014. Distribution, morphometry, and land use of Delmarva Bays.
Wetlands 34: 1219–1228.

Franzluebbers AJ, Stuedemann JA, Franklin DH. 2012. Water
infiltration and surface-soil structural properties as influenced by
animal traffic in the Southern Piedmont USA. Renewable Agriculture
and Food Systems 27: 256–265.

Gamble D, Grody E, Undercoffer J, Mack JJ, Micacchion M. 2007.
An Ecological and Functional Assessment of Urban Wetlands in
Central Ohio. Volume 2: Morphometric Surveys, Depth–Area–Volume
Relationships and Flood Storage Function, Ohio EPA Technical
Report WET/2007-3B. Ohio Environmental Protection Agency,
Wetland Ecology Group, Division of Surface Water: Columbus.

Gleason RA, Tangen BA, Laubhan MK, Kermes KE, Euliss NH Jr.
2007. Estimating water storage capacity of existing and potentially
restorable wetland depressions in a subbasin of the Red River of the
north. US Geological Survey Open-File Report 2007–1159.

Golden HE, Lane CR, Amatya DM, Bandilla KW, Raanan Kiperwas
H, Knightes CD, Ssegane H. 2014. Hydrologic connectivity between
geographically isolated wetlands and surface water systems: a review
of select modeling methods. Environmental Modelling and Software 53:
190–206.

Golden HE, Sander SA, Lane CR, Zhao C, Price K, D’Amico E,
Christensen JR. 2015. Relative effects of geographically isolated
wetlands on streamflow: a watershed-scale analysis. Ecohydrology .
DOI:10.1002/eco.1608.

Haag KH, Pfeiffer W. 2012. Flooded area and plant zonation in
isolated wetlands in well fields in the northern Tampa Bay
region, Florida, Following Reductions in Groundwater-
Withdrawal Rates. US Geological Survey Scientific Investigations
Report 2012–5039.

Haag KH, Lee TM, Herndon DC. 2005. Bathymetry and vegetation in
isolated marsh and cypress wetlands in the northern Tampa Bay area,
2000–2004. US Geological Survey Scientific Investigations Report
2005–5109.

Hammersmark CT, Dobrowski S, Rains MC, Mount JF. 2010.
Simulated effects of stream restoration on herbaceous vegetation
distribution. Restoration Ecology 18: 882–893.

Hey DL, Philippi NS. 1995. Flood reduction through wetland
restoration: the Upper Mississippi River Basin as a case history.
Restoration Ecology 3: 4–17.

van der Kamp G, Hayashi M. 2009. Groundwater-wetland ecosystem
interaction in the semiarid glaciated plains of North America.
Hydrogeology Journal 17: 203–214.
Hydrol. Process. 30, 153–160 (2016)

http://www.jonesctr.org/education_and_outreach/publications/GIW_Workshop_Summary_2013_v6.3.pdf
http://www.jonesctr.org/education_and_outreach/publications/GIW_Workshop_Summary_2013_v6.3.pdf
http://www.jonesctr.org/education_and_outreach/publications/GIW_Workshop_Summary_2013_v6.3.pdf


INVITED COMMENTARY
van der Kamp G, Hayashi M, Gallen D. 2003. Comparing the
hydrology of grassed and cultivated catchments in the semi-arid
Canadian prairies. Hydrological Processes 17: 559–575.

Lane C, D’Amico E. 2010. Calculating the ecosystem service of water
storage in isolated wetlands using LiDAR in north-central Florida,
USA. Wetlands 30: 967–977.

Lang M, McDonough O, McCarty G, Oesterling R, Wilen B. 2012.
Enhanced detection of wetland–stream connectivity using LiDAR.
Wetlands 32: 461–473.

Lang M, McCarty G, Oesterling R, Yeo I-Y. 2013. Topographic
metrics for improved mapping of forested wetlands. Wetlands 33:
141–155.

Lee TM,Haag KH,Metz PA, Sacks LA. 2009. Comparative hydrology,
water quality, and ecology of selected natural and augmented
freshwater wetlands in West-Central Florida. US Geological Survey
Professional Paper 1758.

Leibowitz SG, Nadeau T-L. 2003. Isolated wetlands: state-of-the-science
and future directions. Wetlands 23: 663–684.

Leibowitz SG, Vining KC. 2003. Temporal connectivity in a prairie
pothole complex. Wetlands 23: 13–25.

Leibowitz SG, Wigington PJ Jr, Rains MC, Downing DM. 2008. Non-
navigable streams and adjacent wetlands: addressing science needs
following the Supreme Court’s Rapanos decision. Frontiers in Ecology
and the Environment 6: 364–371.

Luo H-R, Smith LM, Allen BL, Haukos DA. 1997. Effects of
sedimentation on playa wetland volume. Ecological Applications 7:
247–252.

Luo H-R, Smith LM, Haukos DA, Allen BL. 1999. Sources of recently
deposited sediments in playa wetlands. Wetlands 19: 176–181.

McDonnell JJ. 2013. Are all runoff processes the same? Hydrological
Processes 27: 4103–4111.

McDonough OT, Lang MW, Hosen JD, Palmer MA. 2014. Surface
hydrologic connectivity between Delmarva Bay wetlands and nearby
streams along a gradient of agricultural alteration.Wetlands 35: 41–53.

McLaughlin DL, Cohen MJ. 2013. Realizing ecosystem services:
wetland hydrologic function along a gradient of ecosystem condition.
Ecological Applications 23: 1619–1631.

McLaughlin DL, Kaplan DA, Cohen MJ. 2014. A significant nexus:
geographically isolated wetlands influence landscape hydrology.
Water Resources Research 50: 7153–7166. DOI:10.1002/
2013WR015002.

Min JH, Perkins DB, Jawitz JW. 2010. Wetland–groundwater interac-
tions in subtropical depressional wetlands. Wetlands 30: 997–1006.

Mushet DM, Calhoun AJK, Alexander LC, Cohen MJ, DeKeyser ES,
Fowler L, Lane CR, Lang MW, Rains MC, Walls SC. 2015.
Geographically isolated wetlands: rethinking a misnomer. Wetlands
. DOI:10.1007/s13157-015-0631-9.

Nadeau TL, Rains MC. 2007. Hydrological connectivity of headwaters
to downstream waters: introduction to the featured collection. Journal
of the American Water Resources Association 43: 1–4.

Nilsson KA, Rains MC, Lewis DB, Trout KE. 2013. Hydrologic
characterization of 56 geographically isolated wetlands in west-central
Florida using a probabilistic method. Wetland Ecology and Manage-
ment 21: 1–14.

OgawaH,Male JW. 1986. Simulating thefloodmitigation role ofwetlands.
Journal of Water Resources Planning and Management 112: 114–128.

Park J, Botter G, Jawitz JW, Rao PSC. 2014. Stochastic modeling of
hydrologic variability of geographically isolated wetlands: effects of
hydro-climatic forcing and wetland bathymetry. Advances in Water
Resources 69: 38–48.

Phillips RW, Spence C, Pomeroy JW. 2011. Connectivity and
runoff dynamics in heterogeneous basins. Hydrological Processes
25: 3061–3075.
159Copyright © 2015 John Wiley & Sons, Ltd.
Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD,
Sparks RE, Stromberg JC. 1997. The natural flow regime. BioScience
47: 769–784.

Pyke CR, Marty J. 2005. Cattle grazing mediates climate change
impacts on ephemeral wetlands. Conservation Biology 19: 1619–1625.

Pyzoha JE, Callahan TJ, Sun G, Trettin CC, Miwa M. 2008. A
conceptual hydrologic model for a forested Carolina Bay depressional
wetland on the Coastal Plain of South Carolina, USA. Hydrologic
Processes 22: 2689–2698.

Rains MC. 2011. Water sources and hydrodynamics of closed-basin
depressions, Cook Inlet Region, Alaska. Wetlands 31: 377–387.

Rains MC, Fogg GE, Harter T, Dahlgren RA, Williamson RJ. 2006.
The role of perched aquifers in hydrological connectivity and
biogeochemical processes in vernal pool landscapes, Central Valley,
California. Hydrological Processes 20: 1157–1175.

Rains MC, Dahlgren RA, Williamson RJ, Fogg GE, Harter T. 2008.
Geological control of physical and chemical hydrology in vernal pools,
Central Valley, California. Wetlands 28: 347–362.

Randall GW, Higgins DR, Russelle MP, Fuchs DJ, Nelson WW,
Andrews JL. 1997. Nitrate losses through subsurface tile drainage in
conservation reserve program, alfalfa, and row crop systems. Journal
of Environmental Quality 26: 1240–1247.

Rosenberry DO, Winter TC. 1997. Dynamics of water-table
fluctuations in an upland between two prairie–pothole wetlands in
North Dakota. Journal of Hydrology 191: 266–289.

Sass GZ, Creed IF. 2008. Characterizing hydrodynamics on boreal
landscapes using archived synthetic aperture radar imagery. Hydro-
logical Processes 22: 1687–1699.

Semlitsch RD, Bodie JR. 1998. Are small, isolated wetlands
expendable? Conservation Biology 12: 1129–1133.

Sinclair WC. 1977. Experimental study of artificial recharge
possibilities in Northwest Hillsborough County, Florida, US Geolog-
ical Survey Water-Resources Investigations 77–13.

Sun RJ, Weeks JB, Grubb HF. 1997. Bibliography of regional
aquifer-system analysis program of the US Geological Survey,
1978–96. US Geological Survey Water-Resources Investigations
Report 97–4074.

Sun G, McNulty SG, Amatya DM, Skaggs RW, Swift LW, Shepard
JP, Riekerk H. 2002. A comparison of the hydrology of the coastal
forested wetlands/pine flatwoods and the mountainous uplands in the
southern US. Journal of Hydrology 263: 92–104.

Tanner GW, Sandoval LD, Martin FG. 1984. Cattle behavior on a
south Florida range. Journal of Range Management 37: 248–251.

Tiner RW. 2003a. Estimated extent of geographically isolated
wetlands in selected areas of the United States. Wetlands 23: 636–652.

Tiner RW. 2003b. Geographically isolated wetlands of the United
States. Wetlands 23: 494–516.

Towler BW, Cahoon JE, Stein OR. 2004. Evapotranspiration crop
coefficients for cattail and bulrush. Journal of Hydrologic Engineering
9: 235–239.

Tsai J-S, Verne LS, McMurry ST, Smith LM. 2007. Influence of land
use and wetland characteristics on water loss rates and hydroperiods
of playas in the southern high plains. Wetlands 27: 683–692.

US Environmental Protection Agency. 2015. Connectivity of Streams
and Wetlands to Downstream Waters: A Review and Synthesis of the
Scientific Evidence. EPA/600/R-14/475F, US Environmental Protec-
tion Agency Washington, DC.

Van Meter KJ, Basu NB. 2015. Signatures of human impact: size
distributions and spatial organization of wetlands in the prairie
pothole landscape. Ecological Applications 25: 451–465.

Walsh CJ, Fletcher TD, Burns MJ. 2012. Urban stormwater runoff: a
new class of environmental flow problem. PloS One 7: e45814
doi:10.1371/journal.pone.0045814.
Hydrol. Process. 30, 153–160 (2016)



M.C. RAINS ET AL.
Ward JV. 1989. The four-dimensional nature of lotic ecosystems.
Journal of the North American Benthological Society 8: 2–8.

Wigington PJ Jr, Leibowitz SG, Comeleo RL, Ebersole JL. 2013.
Oregon hydrologic landscapes: a classification framework. Journal of
the American Water Resources Association 49: 163–182.

WilcoxB,DeanD, JacobJ, SipoczA. 2011.Evidence of surface connectivity
for Texas Gulf Coast depressional wetlands.Wetlands 31: 451–458.

Winter TC. 1999. Relation of streams, lakes, and wetlands to
groundwater flow systems. Hydrogeology Journal 7: 28–45.

Winter TC. 2001. The concept of hydrologic landscapes. Journal of
the American Water Resources Association 37: 335–349.
160Copyright © 2015 John Wiley & Sons, Ltd.
Wolock DM, Winter TC, McMahon G. 2004. Delineation and
evaluation of hydrologic-landscape regions in the United States using
geographic information system tools and multivariate statistical
analyses. Environmental Management 34: S71–S88.

Wood WW, Sanford WE. 1995. Chemical and isotopic methods for
quantifying ground-water recharge in a regional, semiarid environ-
ment. Ground Water 33: 458–468.

Yang J, Chu X. 2012. Effects of DEM resolution on surface depression
properties and hydrologic connectivity. Journal of Hydrologic
Engineering 18: 1157–1169.
Hydrol. Process. 30, 153–160 (2016)


