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Geographically-based threat assessments are important for identifying natural resources at risk, yet have
rarely been applied to identify habitat conservation priorities for imperiled organisms at a local scale.
Pool-breeding amphibians have complex life cycles that place them at risk from habitat loss and fragmen-
tation both in wetlands and in adjacent uplands. Because the most rapidly growing cause of habitat deg-
radation in North America has been urbanization, a threat analysis of pool-breeding amphibian habitat
should both be dynamic, i.e., sensitive to land-use change, and comprehensive, recognizing traditional
protected area networks as well as less formal conservation assets (e.g., land-use regulations). To assess
threats to wood frogs (Rana sylvatica) and spotted salamanders (Ambystoma maculatum) in a rapidly
urbanizing, forested region of New England (USA) we examined gaps in the current protection network,
as well as changing human settlement patterns. We found that greater than 50% of 542 potential breed-
ing pools delineated using low-level infra-red aerial photography (median area 379.5 m2) were not rep-
resented on National Wetland Inventory (U.S.FWS) maps, and thus de facto at risk. Most importantly,
conservation lands and regulatory protections failed to protect 46% of potential breeding pools and
80% of adjacent non-breeding habitat. While an assessment of human settlement patterns projected that
only 5% of the region contained high quality amphibian habitat under acute development pressure, nearly
half of the region (44.7%) had attained a moderate threat level, highlighting the importance of conserva-
tion planning during early stages of urbanization. We conclude by illustrating the role for multiple con-
servation strategies when protecting functional landscapes for pool-breeding amphibians.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Amphibians are threatened globally by interacting stressors, but
none is so acute as physical habitat degradation and destruction
(Alford and Richards, 1999; Stuart et al., 2004). Tools for identify-
ing and prioritizing at-risk habitats in the face of expanding human
activity are needed to anticipate and mitigate the effects of habitat
loss on amphibians and other sensitive taxa. Most pool-breeding
amphibians have complex life cycles requiring multiple habitats,
including an aquatic breeding site, adjacent upland and wetland
non-breeding habitat, and a permeable migration matrix to con-
nect and buffer these elements (Semlitsch, 2002). Consequently,
vernal pool amphibians are threatened in urbanizing areas by hab-
itat loss at multiple scales: loss of small wetland breeding pools,
clearing and conversion of adjacent non-breeding habitat, and loss
of landscape connectivity (Gibbs, 1993, 2000; Holland et al., 1995;
Semlitsch and Bodie, 1998; Dahl, 2000). Best management prac-
tices and recommendations for pool-breeding amphibian conser-
vation have been promulgated that integrate local to landscape-
scale factors (Semlitsch, 2000, 2002), however, methodologies for
ll rights reserved.

: +1 864 656 3304.
in).
prioritizing their application among competing areas of the land-
scape are only recently being developed (Compton et al., 2007).
In an era of rapid development and human competition for space
(Sanderson et al., 2002a), it is increasingly necessary to prioritize
and triage among potential conservation actions (Groves et al.,
2002). Incorporating habitat risk assessment into the conservation
planning process can allocate limited resources where conserva-
tion needs are greatest (Scott et al., 1993; Margules and Pressey,
2000; Lawler et al., 2003; Rodrigues et al., 2004).

Geographic conservation planning tools including GAP (Geo-
graphic Approach to Planning) and threat analyses are designed
to help assess risk to habitat for species of potential conservation
concern (Scott et al., 1993; Theobald, 2003). Traditionally, a GAP
analysis compares the geographic distribution of potential habitats
with the distribution of a protective network of conservation lands,
and potentially less formal conservation assets (e.g., land-use reg-
ulations), in order to identify gaps in protection of priority habitats
(Scott et al., 1993; Groves et al., 2000). A threat analysis moves be-
yond the identification of conservation gaps, to differentiating
areas on the landscape where unprotected habitat is most threa-
tened by expansion of human activities (Theobald, 2003, 2004).
In a biodiversity threat analysis, habitat and protection layer infor-
mation are combined with existing human population density,
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modified by projected population growth rates (Stoms, 2000; The-
obald, 2003). The result is a spatially-explicit summary of where
threats from anthropogenic development are most acute with re-
spect to specific elements of biodiversity. Developed for and ap-
plied primarily at broad biogeographic scales (e.g., state-global)
(Groves et al., 2002; Rodrigues et al., 2004), GAP and threat analy-
ses have rarely been applied to inform conservation planning for
individual taxa at local scales (Allen et al., 2001; Moon, 2001). To
our knowledge GAP and threat analyses have yet to be applied to
the problem of global amphibian declines generally, or more spe-
cifically, to the conservation of pool-breeding amphibians in rap-
idly developing landscapes.

Vernal pool ecosystems of northeastern North America provide
breeding habitat for a wide diversity of amphibian species (�27
spp.; Colburn, 2004; Semlitsch and Skelly, 2008) and are under
threat from expanding exurban development (Homan et al.,
2004; Skidds et al., 2007). We assess risk to breeding and non-
breeding habitat of two of the region’s most ubiquitous and better
studied pool-breeding species, wood frogs (Rana sylvatica) and
spotted salamanders (Ambystoma maculatum). The life history
and habitat associations of these species are representative of
many other vernal pool amphibians, in that breeding occurs pri-
marily in seasonal, isolated wetlands followed by extensive use
of neighboring post-breeding forested habitat (Petranka, 1998;
Hunter et al., 1999). Breeding and post-breeding habitat are con-
nected by overland migrations often over 100 m (Semlitsch and
Bodie, 2003), with juvenile dispersal from natal pools likely
exceeding 1000 m (Gordon, 1968; Berven and Grudzien, 1990;
Gamble et al., 2007). Movements at these scales make pool-breed-
ing amphibians especially vulnerable to potential landscape barri-
ers such as roads (Fahrig et al., 1995; Clevenger et al., 2001), which
in turn affect dispersal success and genetic linkages at the popula-
tion level (Reh and Seitz, 1990; Hitchings and Beebee, 1998; Gibbs
and Reed, 2008). Heavily fragmented landscapes have reduced
populations of pool-breeding amphibians (Kolozsvary and Swihart,
1999; Lehtinen et al., 1999; Marsh and Trenham, 2001; Porej et al.,
2004), intensifying the need to understand how land-use change
will influence the quality and distribution of vernal pool habitat
in the future.

By developing these two geographically-based conservation
planning tools, GAP and threat analyses, for two vernal pool focal
species, we seek to advance amphibian conservation planning so
that it includes an explicit assessment of habitat risk. We use
fine-scale spatial data available from regional conservation groups,
and in so doing, meet a secondary goal of providing a repeatable
model of scientific collaboration in which locally-generated land
protection data are incorporated into regional conservation plan-
ning efforts (Theobald et al., 2000; Farnsworth, 2004). Finally, we
propose a conservation triage (Hobbs and Kristjanson, 2003) for
pool-breeding amphibians, in which information about current
habitat protection levels and future risk is used to recommend spe-
cific conservation actions.
2. Methods

2.1. Study area

As is the case for much of eastern North America, southern
Maine is undergoing rapid urbanization, resulting in significant
threats to wildlife (Krohn and Hepinstall, 2000). Some coastal
Maine towns experienced growth rates in excess of 30% over the
past decade (Plantinga et al., 1999). Floristically, the region is more
similar to central than to northern New England, with repeated fire
and land clearing in recent centuries influencing species composi-
tion (Foster, 1992; Copenheaver et al., 2000). The coastal portions
of the region are dominated by red oak (Quercus rubra) – pine (Pi-
nus spp.) forests, with inland regions dominated by eastern hem-
lock (Tsuga canadensis) – beech (Fagus grandifolia) associations.
For this study, four southern Maine towns (North Berwick, Kenne-
bunkport, Biddeford and Falmouth) were selected non-randomly
to represent a gradient of development present in the region
(Fig. 1). The current land-use pattern is characterized by single-
family developments and small subdivisions accessed by second-
ary rural roads on the margins of mostly large forest blocks of an
average size of 289 ha (range: 13–742 ha).

2.2. Data layers

The following five data layers were assembled as a basis for
conducting fine-scale GAP and threat analyses for pool-breeding
amphibian habitat in southern Maine: (1) development pressure,
(2) potential habitat value, (3) land-use intensity, (4) actual habitat
value, and (5) land protection level.

2.2.1. Development pressure (DP)
Development pressure is an estimate of potential land-use

change based on current population density and growth trends
(Theobald, 2003). In Maine, the State Planning Office used US Cen-
sus data to project growth trends for the period 2000–2015 as per-
centage increases in population (MESPO, 2003). We multiplied
these growth trends by human population density from 2000 US
Census Blocks to produce a generalized Development Pressure
map (using 100 m grids). This index represents areas from which
new residential development is likely to radiate, because it incor-
porates both an area’s current land-use and its likelihood for future
growth. Thus, an area with dense population but a low rate of
development will be less likely to present new threats in the future
than an area with low or moderate population and high growth
rates. Original development pressure values for the four study
towns (range: 0–13,133) were placed in five classes (0–4) to
approximate the scale of other components (see below) used in
the model depicting threats to pool-breeding amphibian habitat
(Fig. 1).

2.2.2. Potential habitat value (PHV)
The basis of the potential habitat layer were vernal pools delin-

eated from low-level (1:12,000) color infra-red (CIR) air photos,
commissioned for the four study towns. These photos were taken
under leaf off and high-water conditions in the early spring of
2001, and then delineated for potential vernal pools by a profes-
sional consulting firm (http://www.woodlotalt.com/). The vernal
pool density of the four towns (1.77/km2) is comparable to those
summarized for other New England municipalities (1.47/km2),
and median pool size (379.5 m2) was in the range of that reported
elsewhere in the region (town median range: 294.5–392.2 m2)
(Calhoun et al., 2003).

Species-specific migration and dispersal distances were used to
approximate non-breeding habitat surrounding delineated poten-
tial breeding pools (Semlitsch and Bodie, 2003). For our purposes,
migration was defined as the annual adult movements between
breeding pools and adjacent non-breeding habitat, and dispersal
as the unidirectional movements of juveniles away from natal
breeding pools (Hunter, 1997). For wood frogs, we used a conser-
vative genetic neighborhood estimate of 1126 m (Berven and
Grudzien, 1990) to represent dispersal, and the longest teleme-
try-documented, straight-line migration movement in our study
area of 340 m to represent migration (Baldwin et al., 2006), a dis-
tance similar to that published for wood frogs elsewhere (Ritten-
house and Semlitsch, 2007a) and for many other anurans
(Semlitsch and Bodie, 2003). For spotted salamanders, there are
no published genetic neighborhoods, nor did we study their migra-

http://www.woodlotalt.com/


Fig. 1. Four study towns shown in the context of regional development pressure (see Methods). The largest regional metropolitan center (city of Portland) has a population of
230,000. The inset shows the US State of Maine, with southern study area.
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tion or dispersal in the study area. Instead, we used the farthest
documented upland occurrence of a spotted salamander from a
breeding pool, �800 m (Gordon, 1968), as a proxy for dispersal po-
tential, and estimated migration at 250 m based on recent findings
that core terrestrial habitat zones commonly used for salamanders
(164–218 m: Semlitsch and Bodie, 1998; Semlitsch and Bodie,
2003) are inadequate (Gamble et al., 2006; McDonough and Paton,
2007). By selecting movement estimates for our analysis in no way
do we imply that they should be the exact distances used for all
modeling or management applications. Amphibian movement data
is rapidly accumulating through recent field telemetry and mark-
recapture studies (reviewed by Semlitsch and Bodie, 2003; Sem-
litsch and Skelly, 2008) and models incorporating movement data
should be subject to revision as field data emerge. Likewise, distri-
bution of amphibians around breeding habitats is not uniform and
management approaches should be based on as spatially explicit
an approach as allowable given available data (Baldwin et al.,
2006; Compton et al., 2007; Rittenhouse and Semlitsch, 2007b).

As a consequence of (a) the high density of vernal pools in our
study area, (b) the relatively long-ranging frog and salamander
movement estimates described above, and (c) the decision to apply
a uniform radial movement approach often promulgated in the lit-
erature (but see Compton et al., 2007), a large portion of our study
area was mapped as potential dispersal habitat: 89.5% for wood
frogs and 75.1% for spotted salamanders. By contrast the more re-
stricted seasonal migration distances used to define non-breeding
‘‘life zone” or ‘‘critical terrestrial habitat” (Semlitsch and Bodie,
2003) encompassed 32.3% and 21.3% of the study area for wood
frogs and spotted salamanders, respectively.

For the purposes of building the habitat threat model described
below, potential breeding pools were buffered by both the species-
specific migration and dispersal distances and each buffer assigned
a habitat value of ‘‘1”. A habitat value of 0 was the minimal value,
assigned to areas where no pools or buffers are present. If potential
breeding or non-breeding habitat of a single focal species were
present, 1 was the minimal value, while values of 6 occurred when
the maximum of 6 buffers overlapped. Pool buffer polygons were
converted to 100 m grids and these layers were then added when
overlapping to produce a density surface of cumulative potential
habitat value (the ‘‘PHV” component of the threat model, ranging
from 0 to 6), incorporating potential breeding and non-breeding
habitat for both wood frogs and spotted salamanders.
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2.2.3. Land-use intensity index (LUI)
Most satellite imagery is inadequate for representing land-use

and habitat availability at a scale that is meaningful for pool-breed-
ing amphibians. Therefore, land-use polygons were manually clas-
sified from the same 1:12,000-scale CIR photos used for
delineating potential breeding pools. To recognize the added
importance of roads as potential fragmenting elements for
amphibians, road classifications were also used. By adapting the
continuum approach to assessing human influence in which an
ordinal scale is used to indicate relative strength of influences
(Sanderson et al., 2002a; Woolmer et al., 2008), an index of land-
use intensity was applied to each of eight classified land uses
and six road classes. We created the index using literature on
amphibian landscape permeability (e.g., Gibbs, 1998; Rothermel
and Semlitsch, 2002), amphibian–habitat relationships (e.g., Fac-
cio, 2003; Regosin et al., 2003), and personal observations obtained
during field research on these species (Table 1). We recognize that
the understanding of amphibian-landscape permeability relation-
ships is only now developing, particularly in relation to cumulative
effects (Forman et al., 2003); nonetheless we felt our additive index
captured the trends emerging from the literature. Implicit in our
approach is the assumption that land-use intensity reaches an
asymptote at the maximum value of 16, where urban areas are
combined with interstate highways; a landscape we assume is
completely inhospitable for pool-breeding amphibians. Land-use
intensity and road coverages were converted to 100 m-scale grids
and the indexed grids were added together to produce a final 1–16
Land-Use Intensity Index (LUI).

2.2.4. Actual habitat value (AHV)
Instead of using the idealized potential habitat values (de-

scribed previously) in our analysis, we derived a more realistic
habitat value that we refer to as actual habitat value (AHV), in-
formed by local land-use intensity, analogous to but computation-
ally simpler than the ‘‘resistant-kernel” approach used by Compton
et al. (2007). Actual habitat value was specifically derived by divid-
ing potential habitat value by land-use intensity (PHV/LUI; range
0–6), with the assumption that increasing land-use intensity de-
grades the current value of pool-breeding amphibian habitat.

2.2.5. Land protection level (PL)
Existing land protection levels were assessed based on fee and

easement status of conservation lands and presence of regulated
wetland, shoreland, and wildlife habitats. Fine scale (tax-parcel)
Table 1
A land-use intensity index for pool-breeding amphibians applied to fine-scale polygons an
The ordinal index is specific for wood frogs (Rana sylvatica) and spotted salamanders (Amby
in the study area.

Land-use Road class Land-use
intensity ind

Lightly managed forest _ 1

Intensively managed forest (heavy partial and
clearcut harvesting)

_ 2

Old fields, scrub-shrub areas Discontinued 3

Low density residential in forest matrix Gravel 4

Hayfields and Pasture Forested secondary
and paved

5

Lawns, golf course Open secondary and
paved

6

Dense residential (suburban) Interstate with no
median

7

Urban/industrial (primarily impervious) Large interstate with
median

8

data indicating the conservation status of individual landholdings
– e.g., conservation easement, National Wildlife Refuge, or tree
farm – were obtained from local organizations, specifically the
Wells National Estuarine Research Reserve (S. Smith, WNERR)
and The Nature Conservancy (D. Coker, Maine TNC). Regulated
wetlands, shoreland zones, and endangered species habitats were
obtained from state agencies (Departments of Environmental Pro-
tection, and Inland Fisheries and Wildlife).

A range of protection levels was assigned on an ordinal scale,
from none (1) to high (4), to all lands in the study area based on
expert opinion of the data compilers. Protection level 2 is low
and includes managed lands with conservation restrictions (i.e.,
tree farms and open space easements) that allow periodic tree har-
vesting, cultivation and limited development. Protection level 2
also includes wetlands above a critical regulatory size threshold
(400 m2; 0.1 acre) whereby state wetland policy can require envi-
ronmental review and permitting for proposed impacts. By con-
trast, wetlands < 400 m2 are generally not subject to either
notification or review in Maine and many other states and thus
are considered largely unprotected by existing regulations (DEP,
2002).

Protection level 3 is moderate and includes land owned by
towns that is not in conservation easement but is generally man-
aged as municipal open space. The risk of habitat conversion for
these lands is less immediate but still real as municipalities occa-
sionally convert portions of this land base to public works and rec-
reation, e.g., school grounds and ball fields. Also in protection level
3 are state regulated shoreland zones (22.9 m for perennial
streams, 76.2 m for coastal wetlands, and freshwater wetlands
and great ponds over 4.05 ha) (DEP, 2003), within which develop-
ment is restricted but permissible on a limited basis.

Protection level 4 offers a high level of protection and includes
those lands explicitly managed for biodiversity and conservation
purposes. Specifically, protection level 4 covers both fee and ease-
ment conservation lands managed by land trusts, state or federal
governments. Also receiving protection level 4 are mapped wet-
lands that occur within state-mandated shoreland zones (but not
the zones themselves, which are intermediate; see above). Wet-
lands occurring within shoreland zones receive extra regulatory
protection during permitting reviews. In practice, this law and
many others related to land-use are not always applied as in-
tended. We chose to follow intent rather than practice as is gener-
ally the case when using GIS databases including protection levels
(e.g., IUCN status). Also receiving the highest protection level were
d used to quantify actual habitat values (AHV) surrounding potential breeding pools.
stoma maculatum), derived from published literature (as listed) and field observations

ex
Permeability and Habitat Studies

deMaynadier and Hunter (1998, 1999); Gibbs (1998); Patrick et al. (2006);
reviewed by deMaynadier and Houlahan (2008)
Means et al. (1996); deMaynadier and Hunter (1998, 1999); Gibbs (1998);
Morris and Maret (2007); Patrick et al. (2006); reviewed by deMaynadier
and Houlahan (2008)
Gibbs (1998); deMaynadier and Hunter (1999); Rothermel and Semlitsch
(2002); Marsh et al. (2004)
Gibbs (1998); deMaynadier and Hunter (2000); Marsh et al. (2005);
reviewed by Windmiller and Calhoun (2008)
Shoop (1965); Gibbs (1998); deMaynadier and Hunter (2000); Rothermel
and Semlitsch (2002); Marsh et al. (2004, 2005)
Gibbs (1998); Rothermel and Semlitsch (2002); Marsh et al. (2005);
Montieth and Paton (2006)
Reh and Seitz (1990); Hitchings and Beebee (1998); Carr and Fahrig (2001);
reviewed by Windmiller and Calhoun (2008) and Gibbs and Reed (2008)
Reh and Seitz (1990); Hitchings and Beebee (1998); Carr and Fahrig (2001);
reviewed by Windmiller and Calhoun (2008) and Gibbs and Reed (2008)
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mapped endangered wildlife habitats. In our study area, the latter
consisted entirely of wetlands hosting state-endangered Blanding’s
turtles (Emydoidea blandingii) surrounded by a 76.2 m buffer with-
in which little or no development activity is permitted under juris-
diction of the state Endangered Species Act.

2.2.6. Mapping validation
The mapping project was carried out concurrently with a field

study in the same area (Baldwin et al., 2006) and followed a valida-
tion of the remote vernal pool detection methods (Calhoun et al.,
2003). There were few errors of commission (what was identified
as a potential breeding wetland usually was), but omissions of ver-
nal pools were moderately common – estimated by Calhoun et al.
(2003) at 25%. Development pressure maps correspond well with
what we observed in the field and learned through discussions
with landowners and local officials. Protected lands data were
mapped at the tax parcel level by a regional land trust, and cap-
tured eight times more area than did the public source (i.e.,
U.S.G.S. GAP).

2.3. GAP analysis

The first step of our GAP analysis was to assess omissions in
detection of potential breeding pools by conventional map data.
We did this under the assumption that, if the resource could not
be detected using publicly available data (U.S.F.W.S National Wet-
land Inventory maps or NWI’s), it represented a de facto gap in pro-
tection as NWI maps are widely used by consultants, planners, and
regulatory officials as the starting point, and often the ending
point, for identifying project area wetlands. To this end, we com-
pared the aerial photo-delineated pool layer (1:12,000 CIR spring
leaf off aerial photography) with the coarser scale NWI maps
(1:58,000 CIR spring leaf off aerial photography).

The next step was to assess gaps in existing protections for
pool-breeding amphibian habitat using traditional GAP methods
of layering resource and protection data (Scott et al., 1993). Specif-
ically, data layers for state-mandated shoreland zones, tax-parcel-
level conservation lands and endangered species habitat were
layered with breeding and non-breeding habitat zones (prior to
inclusion in the PHV) for vernal pool amphibians thereby summa-
rizing potential gaps in the existing protection network.

2.4. Threat analysis

The premise of our threat model is that development pressure
serves to compromise existing habitat values that lie outside of
existing protection layers and results in the greatest threat values
when both development pressure and adjusted habitat values are
estimated to be high, and existing protection low, as follows:

Threat value ¼ ðDevelopment PressureÞ
� ðActual Habitat ValueÞ=Protection Level

The model produces as output a map where the confluence of
development pressure and high-value, unprotected habitat have
the greatest output ‘‘threat” value, at a resolution of 10,000 m2

(1 ha). To reduce the output to a scale of threat similar to our scale
of protection, the raw threat quotients 0–20 were rescaled to just 5
levels, 0 (lowest) to 4 (highest threat). We felt that simplifying the
output in this manner would facilitate application of the model to
real world planning. Zero (no threat) values were produced in two
ways: (1) when there were no actual habitat values present (e.g.,
no breeding pools present, or complete coverage by urban/indus-
trial land-use), or (2) when there was no predicted development
pressure, which only occurs when human population in a census
block is zero as each town has a projected growth rate > 0.
2.5. Economic characteristics of towns

In order to better understand the underlying socioeconomic
causes for patterns of threat, we investigated the economic charac-
teristics of towns using data from the 2000 US Census (MESPO,
2001). Tax valuation/housing unit were taken as an indicator of
property value, and average per capita income were compared to
town-level habitat threat levels in combination with the compo-
nents of development pressure (town-level growth rate and US
census block population density). Sensitivity of the threat model
to two primary variables was assessed by increasing and decreas-
ing values for development pressure and protection level by 25%.

2.6. Conservation triage

To demonstrate one approach to applying threat assessment re-
sults to conservation strategies for pool-breeding amphibians, we
undertook a conservation triage (Hobbs and Kristjanson, 2003).
Conservation triage applies medical disaster terminology to allo-
cating resources for conservation action based on urgency. It dif-
fers from prioritization in that it attempts to assign ‘‘treatments”
to varying landscape ‘‘conditions”. In our triage high-threat, high-
value landscapes are considered in need of more urgent care, while
other landscapes are not considered for immediate treatment
either because they have high ecological value but face little cur-
rent threat, or are considered beyond ecological recovery (e.g., ur-
ban and/or industrial locales).
3. Results

3.1. Gaps in detection

The U.S.F.W.S National Wetland Inventory maps (1:58,000) did
not include over half (55.3%) of the pools that were delineated for
the study area using a finer scale of aerial photography (1:12,000).
Predictably, those pools not captured by the NWI but detected by
lower-level flights were significantly smaller (�x ¼ 442:92 m2,
SD = 597.50) than those included (�x ¼ 963:08 m2, SD = 1151.78;
t = �6.774, df = 540, p < 0.001). Furthermore, we found no vernal
pool-type wetlands indicated by the NWI that were not identified
by our own finer scale, remote delineation layer.

3.2. Gaps in protection

Of the 542 potential breeding pools delineated for the study
area, 249 or approximately half (46%) received no formal protec-
tion from any mechanism (Fig. 2). Of the 293 pools that received
some form of protection (54% of total), more than a third (106
pools; 19.6% of total) were captured by the regulatory review affor-
ded by their size alone (>400 m2). Conservation lands of all protec-
tion levels captured 21% of all 542 pools. Most of this protection
was provided by multiple use land; less than 2% of all pools were
captured by conservation land managed primarily for biodiversity
(highest protection level of 4; Fig. 2). In total, only 15.2% of all pools
were captured by the three sources for highest levels of protection
(level 4): (1) lands specifically managed for biodiversity conserva-
tion (1.8% of total; 3.4% of those protected), (2) regulated endan-
gered species habitat (2% of total; 3.8% of those protected), and
(3) pools located inside regulated shoreland zones (11.4% of total;
21.1% of those protected).

As expected, gaps in existing protection for terrestrial non-
breeding habitat were more extensive than for the breeding pools
themselves (Fig. 3). In contrast to the nearly half of all potential
breeding pools that received at least partial protection, only 20%
of all delineated non-breeding habitat received some level of pro-



Fig. 2. The existing protection network of conservation and regulated lands for mapped amphibian breeding pools in an urbanizing, forested region of New England (USA).
Pools were delineated from fine-scale, color infra-red, high-water aerial photography. Protection level categories range from 1 (no known) to 4 (highest; managed for
biodiversity). Mapped lands include Regulated Endangered Species Habitat (occupied wetlands and adjacent habitat zone of 76.2 m), fee and easement conservation lands
(varied levels of protection including Lands Managed for Biodiversity, Municipal Lands, and Managed Land), Regulated Shoreland Zones (riparian lands subject to regulatory
review and limited development), Regulated Wetlands (wetlands > 400 m2 subject to increased regulatory scrutiny) and No Known Protection.

Fig. 3. The existing protection network of conservation and regulated lands
influencing non-breeding habitat for pool-breeding amphibians in an urbanizing,
forested region of New England (USA). Non-breeding habitat is delineated as
species-specific radial maximum migration zones, i.e., 340 m for wood frogs (Rana
sylvatica) and 250 m for spotted salamanders (Ambystoma maculatum).
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tection. Because non-breeding habitat is extensive spatially, it was
captured roughly in proportion to the amount of landscape covered
by managed and regulated lands (20%). Depending on species, be-
tween 20.2% (wood frog), and 22.8% (spotted salamander) of non-
breeding habitat received some level of protection. Of this, most
was protected by managed forest and agricultural lands, and lands
subject to regulated development. For example, 91% of the pro-
tected spotted salamander, and 87.9% of the protected wood frog
non-breeding habitat was protected by tree farms, tax credit farm-
lands, municipal (no easement) lands, and regulated shoreland
zones, while only 8.8% (spotted salamander) to 12.2% (wood frog)
was protected at the highest level (Fig. 3).

3.3. Threat analysis

The results of the threat assessment point to two tiers of land-
scape threat for pool-breeding amphibians: (1) a relatively small
percentage (5.1%; 1547 ha) of the four study towns acutely threa-
tened (level 3 and 4 threat), and (2) a relatively large land area
(44.4%; 13,419 ha) at low to moderate threat levels (level 1 and 2
threat). The remainder (50.3%) of the land area was not threatened
(level 0 threat), due to (a) naturally low habitat potential combined
with low development pressure, (b) lands already protected at the
highest level (4), or (c) very high current land-use intensity com-
bined with low habitat value (e.g., an urban center). Within each
of the four study towns, areas most threatened were generally
characterized by landscapes where individual houses and smaller
subdivisions bordered otherwise unfragmented forest matrix
blocks of 1–5 km2 (the darkest blocks in Fig. 4).

Our sensitivity analysis suggests that development pressure is
more influential than land protection level in determining overall
landscape threat levels for pool-breeding amphibians. For example,
to achieve a decrease in threat level of 50%, either a 50% decrease in
development pressure, or 80% increase in protection level, are
needed.

When evaluating sociodemographic characteristics of our study
towns, the greatest threat values appeared to result from a combi-
nation of intermediate population density and high growth rates.
For example, the town of Falmouth (population density 13.5 peo-
ple/km2 and growth rate 23.5%) had the greatest threat levels



Fig. 4. Threats to pool-breeding amphibian habitat in adjacent southern Maine
(USA) towns. Darker areas represent identified 1–5 km2 blocks of relatively
unfragmented pool-breeding amphibian habitat that are more threatened by
growth rates on their margins. The major road network is shown to emphasize the
importance of roadless areas for amphibian conservation in urbanizing landscapes.
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(Fig. 5). By contrast, Biddeford had a higher population density
(26.8 people/km2), but a lower growth rate (5.9%), resulting in
much lower levels of threat. Rural towns such as North Berwick,
with a high growth rate (23%) but low population density (4.4 peo-
ple/km2), may be most dynamic in terms of development potential,
but present relatively little overall threat to vernal pool amphibian
habitat in the near future (Fig. 5). By contrast, towns with interme-
diate levels of settlement (those with some quality habitat remain-
ing) combined with high growth rates (e.g., Falmouth) may be the
kinds of places most urgently in need of conservation action, today.
Fig. 5. Relationship among socioeconomic conditions and degree of threat to pool-breed
deviate positively or negatively from the mean socioeconomic values across four munic
town (

P
threat index for all 1 ha cells in town/town area).
4. Discussion

Our GAP and Threat assessments suggest that the current
framework of conservation lands and regulations provides only
limited protections for pool-breeding amphibian habitat in rapidly
urbanizing landscapes. Nearly half of the 542 delineated potential
breeding pools and 80% of delineated non-breeding habitat as-
sessed in southern Maine (USA) currently receive no known form
of protection. Further, many breeding pools and associated habi-
tats are de facto unprotected because they are undetectable by
conventional mapping products (e.g., National Wetlands Inven-
tory; NWI) and when planning for the conservation of wetlands,
remote detection and mapping using these products are generally
the first steps in the delineation process (Tiner, 1999). We note a
two-fold improvement in vernal pool detection using 1:12,000 aer-
ial photography over the NWI’s 1:58,000 scale, while Calhoun et al.
(2003) found that an even finer scale of aerial photography
(1:4800) detected nearly four times as many pools. The first step
in conservation planning is being able to identify habitats and
many low-cost alternatives to custom aerial CIR photography exist
(Burne and Lathrop, 2008). For pool-breeding amphibians, simple
wetland detectability may be a major hurdle to overcome
considering that even when detected, nearly half may remain
unprotected.

While it is generally recognized that state and federal wetland
regulations need to be strengthened to protect small, isolated wet-
lands (Gibbs, 1993; Semlitsch and Bodie, 1998; Zedler, 2003), our
results provide a measure of just how significant an impact stron-
ger regulations could have. Of the protected pools in southern
Maine, we found that greater than a third (36.2%) receive protec-
tion only because of minimal regulatory oversight based on size
(>400 m2), which still allows for potential impact during the state’s
permitting process. Similarly, pools eligible for protection under
state-mandated shoreland zoning do not uniformly receive it, as
rigor of local enforcement varies widely. Thus, our estimates of
protection levels for pools are probably high. Regulations designed
to specifically protect the unique values associated with smaller
isolated wetlands would improve protection for these, and the
remaining 2/3 of the vernal pools in our study area. Following
enactment of new regulations in 2007 for high-value vernal pools
that qualify as Significant Wildlife Habitat (http://www.maine.gov/
dep/blwq/docstand/nrpa/vernalpools/index.htm), including an
ing amphibian habitat in southern Maine (USA). Bars show extent to which towns
ipalities (horizontal solid line). Filled circles show mean density of threat for each

http://www.maine.gov/dep/blwq/docstand/nrpa/vernalpools/index.htm
http://www.maine.gov/dep/blwq/docstand/nrpa/vernalpools/index.htm
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adjacent terrestrial habitat zone of 76 m, the US State of Maine
arguably now hosts one of the strongest regulatory safety nets
for vernal pools in North America.

Conservation of pool-breeding amphibians must take into ac-
count that many species make far-ranging movements, requiring
relatively intact forest landscapes enveloping their breeding wet-
lands (Semlitsch and Bodie, 1998; Semlitsch, 2000; Gamble et al.,
2007). In contrast to the protection coverage we assessed for
breeding pools themselves (nearly 50%), only 20% of non-breeding
habitat for pool-breeding amphibians received some protection.
This was not ‘‘hard” protection, but primarily resulted from shore-
land zoning regulations and lower-level conservation lands where
management for biodiversity is secondary to other objectives (e.g.,
silviculture). Tree farms and shoreland zones allow several land-
use activities detrimental to pool-breeding amphibians including
partial canopy clearing, road building, and limited residential
development. The detrimental effects of roads and development
have been increasingly documented for pool-breeding amphibians
(reviewed by Semlitsch, 2000; Windmiller and Calhoun, 2008).
While forest management is among the more compatible con-
sumptive land-use activities for conserving amphibian habitat, it
can have negative impacts if not practiced in an ecological manner
(reviewed by deMaynadier and Hunter, 1995; deMaynadier and
Houlahan, 2008). Nonetheless, tree farms, shoreland zones and
other low to moderate-level conservation lands not traditionally
quantified in large-scale GAP analyses, clearly play an immediate
role in the protective network that currently exists for pool-breed-
ing amphibians; one that could be enhanced over time through
additional purchase of development rights by federal, state, or local
conservation interests.

The most rapid land-use conversion typically occurs in the rur-
al-urban (exurban) fringe where current human population densi-
ties may be moderate but growth rates are rapid due to a
combination of land value and availability (Bell and Irwin, 2002;
Hansen et al., 2005). We observed the greatest threats to pool-
breeding amphibians where these same exurban zones overlapped
portions of the landscape supporting high habitat values for
Table 2
A conservation triage for pool-breeding amphibian habitat in a rapidly urbanizing region (
ordered vertically with increasing levels of urgency, and horizontally using a medical me
broad geographic areas) to ‘‘emergency” (i.e., local and urgent actions to address acute lev

Level of urgency Land
area
(ha)

Percent
of study
area

Outreach State and fe
wetland
regulation

Higher threat = combination of
greater habitat value and
development pressure

� Education � Improved
regulation fo
small, isolat
wetlands

� Promulgation of
Best Management
Practices

� Improved
buffer prote

0
(no threat) 15,264 50.5 x x
1
(low) 8508 28.2 x x
2
(moderate) 4911 16.2 x x
3
(high) 1086 3.6
4
(extreme) 461 1.5
amphibians. Specifically, threat was greatest where intermediate
human densities (�10–30 people/km2) were combined with high
projected growth rates (>20%) and high density of breeding and
non-breeding habitat in remaining forest blocks sized 1–5 km2.
In the American West, exurban development has been rapidly
overtaking sensitive habitat at coarse (e.g., county) scales (e.g.,
riparian areas on the outskirts of sprawling cities; Theobald,
2003). Our results from the densely settled Northeast suggest the
same processes underway at much finer scales (i.e., amphibian
habitat within New England towns). In the long-settled Northeast
(European settlement since the 1600’s), there is an abundant sup-
ply of forested land from reverted farmlands (Foster, 1992) that
can serve as ‘‘habitat” for both subdivisions and, where moderately
sized patches > 1 km2 remain, pool-breeding amphibians. Given
our results, it appears that a promising strategy for conserving
pool-breeding amphibian habitat in developing landscapes is to
strengthen protections for remaining intact forest matrix blocks
hosting wetland complexes in areas where human population
densities remain low to intermediate but projected growth rates
are high – thus preventing large portions of the landscape from
slipping into the highest risk status for imminent development
(Fig. 4).

While our analysis may seem parochial (e.g., integrating local
conservation lands data and state-level regulations), assessing risk
is scale-dependent. For small, terrestrial vertebrates such as pool-
breeding amphibians, fine-scale habitat and protective network
data are required. These are often only available through partner-
ships with local environmental groups and agencies that collect
and maintain valuable, fine-scale geographic data (Allen et al.,
2001). We were able to use data at a much finer scale than the
30-m resolution Landsat-TM and conservation lands data that are
typically employed for coarser scale analyses (Woolmer et al.,
2008). For pool-breeding amphibians and other localized habitat
specialists, a comprehensive assessment of the protection network
requires fine-scale data on wetlands and their regulations as well
as conservation lands under ownerships not typically tracked
(e.g., local land trusts and town governments). Such fine-scale
southern Maine, USA), based on results of a threat analysis. Conservation actions are
taphor from ‘‘preventative” (i.e., longer term actions designed to reduce threats over
els of threat).

Preventative Emergency

Conservation strategy

deral Local conservation Private land incentives Fee and easement
purchase

r
ed

� Improved ordinances
and code enforcement

� Managed land tax
credits (e.g., open space,
tree farm, farmland)

� Federal, state,
and private
conservation
groups

riparian
ctions

� Improved
comprehensive
planning for natural
resources

� Financial assistance for
habitat management

x

x x

x x x

x
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protection network data is often difficult to obtain in part because
local land trusts do not want to disseminate maps fearing that the
public will see them as recreational lands when in fact they often
have no recreational easements (Brewer, 2003). Yet, in our study,
conservation lands data compiled by the Wells National Estuarine
Reserve covered eight times more of the landscape than the more
coarse-scale conservation lands layer provided by the U.S.G.S. used
most often for conservation planning at an ecoregion scale. We
concur with Theobald et al. (2000) and many others that through
improved academic–NGO–local agency partnerships, fine-scale
map data can become available for applied research, and that such
partnerships provide an avenue for transferring research results to
inform local, science-based conservation practices.

Reactive land purchases to conserve resources that are immi-
nently threatened are often far more expensive than long-term
strategies, as suggested by our conservation triage (Table 2). For
example, a conservation fee purchase of only our top 1.5% high-va-
lue, high-threat habitat would require an enormous expenditure
well out of balance with the resources of most conservation orga-
nizations, with the 461 ha of land in the highest threat level costing
approximately $40 million based on current land values available
from the state Planning Office. For comparison, this same dollar
amount could purchase roughly 73,000 ha of remote, unsettled for-
est land elsewhere in the region. As a concurrent aspect of the
overall strategy, we suggest that implementing aggressive, proac-
tive conservation measures may be more cost efficient by prevent-
ing low to moderately threatened habitat from slipping to the
highest threat status (Table 2). Nearly half of our study landscape
is currently classified as under intermediate threat (levels 1–3),
and loss or fragmentation of significant portions of this acreage
might compromise the viability of pool-breeding amphibian popu-
lations in this region. Systematic planning and implementation of
preventative measures could include improved regulations for
small, isolated wetlands (Zedler, 2003), restrictions on develop-
ment imposed by municipal zoning, and promulgation of voluntary
best management practices (Calhoun et al., 2005) and conservation
subdivision designs (Arendt, 1999; Milder, 2007) while simulta-
neously increasing efforts toward broad-scale environmental edu-
cation (Calhoun and Reilly, 2008).

Conservation triage is controversial (Hobbs and Kristjanson,
2003; Lawler et al., 2003), but we believe it is a viable idea partic-
ularly in rapidly urbanizing landscapes. While we do not advocate
abandoning high-value wetlands or wildlife habitat, we recognize
that funding for conservation is limited, especially at the local scale
and for ecosystems used by common animals. Small, isolated wet-
lands are particularly vulnerable and yet so locally abundant in
some regions that guidance is needed to prioritize action – not only
‘‘where” to act and with what degree of urgency, but ‘‘what” to do
with different areas of the landscape. Incipient amphibian declines
necessitate identifying and protecting key habitats prior to the loss
of those populations inhabiting them. Therefore, we recommend a
strategic approach based on a spatially-explicit analysis of the rela-
tionship between modeled habitat for relative habitat specialists
(e.g., pool-breeding amphibians) and estimated levels of landscape
threat (e.g., exurban development in areas lacking conservation
lands). Once vulnerable places are targeted by such analyses of
threat, their ability to sustain amphibian populations should be as-
sessed using spatially-explicit population viability models (e.g.,
Harper et al., 2008). Finally, conservation planners cannot rely on
remotely-obtained geographic data alone. Regardless of scale, only
rigorous field surveys will validate models and identify critical
habitats. Ultimately, the most effective conservation strategy in
urbanizing landscapes will arise from a union of geographic plan-
ning tools utilizing fine-scale habitat and threat data, on-the-
ground biological surveys, and interactions with local stakeholders
(Sanderson et al., 2002b).
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